芝麻web文件管理V1.00
编辑当前文件:/home/strato/chroot/opt/RZphp5/includes/Crypt/Xtea.php
| // +----------------------------------------------------------------------+ // | Original code: http://vader.brad.ac.uk/tea/source.shtml#new_ansi | // | Currently to be found at: | // | http://www.simonshepherd.supanet.com/source.shtml#new_ansi | // +----------------------------------------------------------------------+ // // $Id: Xtea.php,v 1.14 2008/03/06 20:01:56 jeroend Exp $ // /** PEAR base class */ require_once 'PEAR.php'; /** * Class that implements the xTEA encryption algorithm. * Class that implements the xTEA encryption algorithm.
* This enables you to encrypt data without requiring mcrypt. * * From the C source: * ----------------------------------------- * The Tiny Encryption Algorithm (TEA) by * David Wheeler and Roger Needham of the * Cambridge Computer Laboratory. * * Placed in the Public Domain by * David Wheeler and Roger Needham. * * **** ANSI C VERSION (New Variant) **** * * Notes: * * TEA is a Feistel cipher with XOR and * and addition as the non-linear mixing * functions. * * Takes 64 bits of data in v[0] and v[1]. * Returns 64 bits of data in w[0] and w[1]. * Takes 128 bits of key in k[0] - k[3]. * * TEA can be operated in any of the modes * of DES. Cipher Block Chaining is, for example, * simple to implement. * * n is the number of iterations. 32 is ample, * 16 is sufficient, as few as eight may be OK. * The algorithm achieves good dispersion after * six iterations. The iteration count can be * made variable if required. * * Note this is optimised for 32-bit CPUs with * fast shift capabilities. It can very easily * be ported to assembly language on most CPUs. * * delta is chosen to be the real part of (the * golden ratio Sqrt(5/4) - 1/2 ~ 0.618034 * multiplied by 2^32). * * This version has been amended to foil two * weaknesses identified by David A. Wagner * (daw@cs.berkeley.edu): 1) effective key * length of old-variant TEA was 126 not 128 * bits 2) a related key attack was possible * although impractical. * * void encipher(unsigned long *const v,unsigned long *const w, * const unsigned long *const k) * { * register unsigned long y=v[0],z=v[1],sum=0,delta=0x9E3779B9,n=32; * * while(n-->0) * { * y+= (z<<4 ^ z>>5) + z ^ sum + k[sum&3]; * sum += delta; * z+= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 & 3]; * } * * w[0]=y; w[1]=z; * } * * void decipher(unsigned long *const v,unsigned long *const w, * const unsigned long *const k) * { * register unsigned long y=v[0],z=v[1],sum=0xC6EF3720, * delta=0x9E3779B9,n=32; * * # sum = delta<<5, in general sum = delta * n * * while(n-->0) * { * z-= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 & 3]; * sum -= delta; * y-= (z<<4 ^ z>>5) + z ^ sum + k[sum&3]; * } * * w[0]=y; w[1]=z; * } * * ----------------------------------------- * * @TODO Add CFB. * * @package Crypt_Xtea * @version $Revision: 1.14 $ * @access public * @author Jeroen Derks
*/ class Crypt_Xtea extends PEAR { /** * Number of iterations. * @var integer * @access private * @see setIter(), getIter() */ var $n_iter; // {{{ Crypt_Xtea() /** * Constructor, sets the number of iterations. * * @access public * @author Jeroen Derks
* @see setIter() */ function Crypt_Xtea() { $this->setIter(32); } // }}} // {{{ setIter() /** * Set the number of iterations to use. * * @param integer $n_iter Number of iterations to use. * * @access public * @author Jeroen Derks
* @see $n_iter, getIter() */ function setIter($n_iter) { $this->n_iter = $n_iter; } // }}} // {{{ getIter() /** * Get the number of iterations to use. * * @return integer Number of iterations to use. * * @access public * @author Jeroen Derks
* @see $n_iter, setIter() */ function getIter() { return $this->n_iter; } // }}} // {{{ encrypt() /** * Encrypt a string using a specific key. * * @param string $data Data to encrypt. * @param string $key Key to encrypt data with (binary string). * * @return string Binary encrypted character string. * * @access public * @author Jeroen Derks
* @see decrypt(), _encipherLong(), _resize(), _str2long() */ function encrypt($data, $key) { // resize data to 32 bits (4 bytes) $n = $this->_resize($data, 4); // convert data to long $data_long[0] = $n; $n_data_long = $this->_str2long(1, $data, $data_long); // resize data_long to 64 bits (2 longs of 32 bits) $n = count($data_long); if (($n & 1) == 1) { $data_long[$n] = chr(0); $n_data_long++; } // resize key to a multiple of 128 bits (16 bytes) $this->_resize($key, 16, true); if ( '' == $key ) $key = '0000000000000000'; // convert key to long $n_key_long = $this->_str2long(0, $key, $key_long); // encrypt the long data with the key $enc_data = ''; $w = array(0, 0); $j = 0; $k = array(0, 0, 0, 0); for ($i = 0; $i < $n_data_long; ++$i) { // get next key part of 128 bits if ($j + 4 <= $n_key_long) { $k[0] = $key_long[$j]; $k[1] = $key_long[$j + 1]; $k[2] = $key_long[$j + 2]; $k[3] = $key_long[$j + 3]; } else { $k[0] = $key_long[$j % $n_key_long]; $k[1] = $key_long[($j + 1) % $n_key_long]; $k[2] = $key_long[($j + 2) % $n_key_long]; $k[3] = $key_long[($j + 3) % $n_key_long]; } $j = ($j + 4) % $n_key_long; $this->_encipherLong($data_long[$i], $data_long[++$i], $w, $k); // append the enciphered longs to the result $enc_data .= $this->_long2str($w[0]); $enc_data .= $this->_long2str($w[1]); } return $enc_data; } // }}} // {{{ decrypt() /** * Decrypt an encrypted string using a specific key. * * @param string $data Encrypted data to decrypt. * @param string $key Key to decrypt encrypted data with (binary string). * * @return string Binary decrypted character string. * * @access public * @author Jeroen Derks
* @see _encipherLong(), encrypt(), _resize(), _str2long() */ function decrypt($enc_data, $key) { // convert data to long $n_enc_data_long = $this->_str2long(0, $enc_data, $enc_data_long); // resize key to a multiple of 128 bits (16 bytes) $this->_resize($key, 16, true); if ( '' == $key ) $key = '0000000000000000'; // convert key to long $n_key_long = $this->_str2long(0, $key, $key_long); // decrypt the long data with the key $data = ''; $w = array(0, 0); $j = 0; $len = 0; $k = array(0, 0, 0, 0); $pos = 0; for ($i = 0; $i < $n_enc_data_long; $i += 2) { // get next key part of 128 bits if ($j + 4 <= $n_key_long) { $k[0] = $key_long[$j]; $k[1] = $key_long[$j + 1]; $k[2] = $key_long[$j + 2]; $k[3] = $key_long[$j + 3]; } else { $k[0] = $key_long[$j % $n_key_long]; $k[1] = $key_long[($j + 1) % $n_key_long]; $k[2] = $key_long[($j + 2) % $n_key_long]; $k[3] = $key_long[($j + 3) % $n_key_long]; } $j = ($j + 4) % $n_key_long; $this->_decipherLong($enc_data_long[$i], $enc_data_long[$i + 1], $w, $k); // append the deciphered longs to the result data (remove padding) if (0 == $i) { $len = $w[0]; if (4 <= $len) { $data .= $this->_long2str($w[1]); } else { $data .= substr($this->_long2str($w[1]), 0, $len % 4); } } else { $pos = ($i - 1) * 4; if ($pos + 4 <= $len) { $data .= $this->_long2str($w[0]); if ($pos + 8 <= $len) { $data .= $this->_long2str($w[1]); } elseif ($pos + 4 < $len) { $data .= substr($this->_long2str($w[1]), 0, $len % 4); } } else { $data .= substr($this->_long2str($w[0]), 0, $len % 4); } } } return $data; } // }}} // {{{ _encipherLong() /** * Encipher a single long (32-bit) value. * * @param integer $y 32 bits of data. * @param integer $z 32 bits of data. * @param array &$w Placeholder for enciphered 64 bits (in w[0] and w[1]). * @param array &$k Key 128 bits (in k[0]-k[3]). * * @access private * @author Jeroen Derks
* @see $n_iter, _add(), _rshift(), _decipherLong() */ function _encipherLong($y, $z, &$w, &$k) { $sum = (integer) 0; $delta = 0x9E3779B9; $n = (integer) $this->n_iter; while ($n-- > 0) { $y = $this->_add($y, $this->_add($z << 4 ^ $this->_rshift($z, 5), $z) ^ $this->_add($sum, $k[$sum & 3])); $sum = $this->_add($sum, $delta); $z = $this->_add($z, $this->_add($y << 4 ^ $this->_rshift($y, 5), $y) ^ $this->_add($sum, $k[$this->_rshift($sum, 11) & 3])); } $w[0] = $y; $w[1] = $z; } // }}} // {{{ _decipherLong() /** * Decipher a single long (32-bit) value. * * @param integer $y 32 bits of enciphered data. * @param integer $z 32 bits of enciphered data. * @param array &$w Placeholder for deciphered 64 bits (in w[0] and w[1]). * @param array &$k Key 128 bits (in k[0]-k[3]). * * @access private * @author Jeroen Derks
* @see $n_iter, _add(), _rshift(), _decipherLong() */ function _decipherLong($y, $z, &$w, &$k) { // sum = delta<<5, in general sum = delta * n $sum = 0xC6EF3720; $delta = 0x9E3779B9; $n = (integer) $this->n_iter; while ($n-- > 0) { $z = $this->_add($z, -($this->_add($y << 4 ^ $this->_rshift($y, 5), $y) ^ $this->_add($sum, $k[$this->_rshift($sum, 11) & 3]))); $sum = $this->_add($sum, -$delta); $y = $this->_add($y, -($this->_add($z << 4 ^ $this->_rshift($z, 5), $z) ^ $this->_add($sum, $k[$sum & 3]))); } $w[0] = $y; $w[1] = $z; } // }}} // {{{ _resize() /** * Resize data string to a multiple of specified size. * * @param string $data Data string to resize to specified size. * @param integer $size Size in bytes to align data to. * @param boolean $nonull Set to true if padded bytes should not be zero. * * @return integer Length of supplied data string. * * @access private * @author Jeroen Derks
*/ function _resize(&$data, $size, $nonull = false) { $n = strlen($data); $nmod = $n % $size; if ( 0 == $nmod ) $nmod = $size; if ($nmod > 0) { if ($nonull) { for ($i = $n; $i < $n - $nmod + $size; ++$i) { $data[$i] = $data[$i % $n]; } } else { for ($i = $n; $i < $n - $nmod + $size; ++$i) { $data[$i] = chr(0); } } } return $n; } // }}} // {{{ _hex2bin() /** * Convert a hexadecimal string to a binary string (e.g. convert "616263" to "abc"). * * @param string $str Hexadecimal string to convert to binary string. * * @return string Binary string. * * @access private * @author Jeroen Derks
*/ function _hex2bin($str) { $len = strlen($str); return pack('H' . $len, $str); } // }}} // {{{ _str2long() /** * Convert string to array of long. * * @param integer $start Index into $data_long for output. * @param string &$data Input string. * @param array &$data_long Output array of long. * * @return integer Index from which to optionally continue. * * @access private * @author Jeroen Derks
*/ function _str2long($start, &$data, &$data_long) { $n = strlen($data); $tmp = unpack('N*', $data); $j = $start; foreach ($tmp as $value) $data_long[$j++] = $value; return $j; } // }}} // {{{ _long2str() /** * Convert long to character string. * * @param long $l Long to convert to character string. * * @return string Character string. * * @access private * @author Jeroen Derks
*/ function _long2str($l) { return pack('N', $l); } // }}} // {{{ _rshift() /** * Handle proper unsigned right shift, dealing with PHP's signed shift. * * @access private * @since 2004/Sep/06 * @author Jeroen Derks
*/ function _rshift($integer, $n) { // convert to 32 bits if (0xffffffff < $integer || -0xffffffff > $integer) { $integer = fmod($integer, 0xffffffff + 1); } // convert to unsigned integer if (0x7fffffff < $integer) { $integer -= 0xffffffff + 1.0; } elseif (-0x80000000 > $integer) { $integer += 0xffffffff + 1.0; } // do right shift if (0 > $integer) { $integer &= 0x7fffffff; // remove sign bit before shift $integer >>= $n; // right shift $integer |= 1 << (31 - $n); // set shifted sign bit } else { $integer >>= $n; // use normal right shift } return $integer; } // }}} // {{{ _add() /** * Handle proper unsigned add, dealing with PHP's signed add. * * @access private * @since 2004/Sep/06 * @author Jeroen Derks
*/ function _add($i1, $i2) { $result = 0.0; foreach (func_get_args() as $value) { // remove sign if necessary if (0.0 > $value) { $value -= 1.0 + 0xffffffff; } $result += $value; } // convert to 32 bits if (0xffffffff < $result || -0xffffffff > $result) { $result = fmod($result, 0xffffffff + 1); } // convert to signed integer if (0x7fffffff < $result) { $result -= 0xffffffff + 1.0; } elseif (-0x80000000 > $result) { $result += 0xffffffff + 1.0; } return $result; } // }}} } ?>